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It is shown, within Bishop's constructive mathematics, that if a point is suffi-
ciently close to a differentiable Jordan curve with suitably restricted curvature, then
that point has a unique closest point on the curve. � 1998 Academic Press

1. INTRODUCTION

Although it seems intuitively clear that if J is a differentiable Jordan
curve whose curvature is bounded away from zero, then there is a
neighbourhood of J within which any point has a unique closest point on
the curve, we have been unable to find any reference to such a result in the
literature. In this paper we not only justify that intuition, but we do so con-
structively, using only intuitionistic logic.1 It follows, in particular, that all
our proofs can be translated into proofs within the context of recursive
function theory [1, 7], Weihrauch's TTE [11, 12], and many other formal
systems for computable analysis.

Our interest in the result arose from a constructive study of weak solu-
tions of the Dirichlet Problem, where, in the classical theory, a condition
related to the approximation property of Jordan curves is used to establish
certain estimates for Sobolev spaces over smooth compact manifolds in RN;
see [10; 8, Sect. 5.5]. Finding sufficient conditions for this property to hold
constructively for a smooth compact manifold in RN would require us to
develop a constructive theory of manifolds, and, in view of the difficulties
involved in the special case of a Jordan curve, appears to be an exceedingly
difficult problem.

We assume that the reader has access to [3, 6, 9] for background infor-
mation about constructive mathematics; additional references for construc-
tive approximation theory include [4, 5].
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1 It appears that in order to establish our theorem with classical logic, one still needs some-
thing like Lemma 8 below, which requires a considerable amount of work; see later in the
paper.
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By the plane we mean either C or R2, which we identify with each other
in the usual way. We denote by B(a, r) (respectively, B� (a, r)) the open
(respectively, closed) ball with centre a and radius r in the plane. If S/C
and the distance

\(z, S)#inf[ |z&s| : s # S]

exists, then we say that S is located. The complement of S in X is the set

XtS#[z # X : \s # S(z{s)],

where z{s means |z&s|>0. We denote by diam(S) the diameter of the set
S, when that diameter exists (which it does if, for example, S is totally
bounded).

By a Jordan curve we mean a one-one, uniformly continuous mapping
f : T � R2 with uniformly continuous inverse, where T is the unit circle in
R2. We then identify f with its range J in the plane and with the mapping
% [ f (ei%) of [0, 2?) onto J. We say that z1 # f (ei%1) precedes z2 # f (ei%2)
on J if %1�%2 , and that f (ei%) is between z1 and z2 if %1<%<%2 ; we denote
the arc [ f (ei%) : %1�%�%2] of J joining z1 and z2 (in that order) by
J(z1 , z2), and the length of that arc, if it exists, by |J(z1 , z2)|. We say that
J is differentiable if the mapping % [ f (ei%) is uniformly differentiable on
each compact interval I/R with length less than 2?; in that case, for each
=>0 there exists $>0 such that if 0�%2&%1<2? and |ei%1&e i%2|<$, then

|J(ei%1, ei%2)|#|
%2

%1
�\df1

d% +
2

+\df2

d% +
2

d%<=,

where f =( f1 , f2).
The Jordan curve theorem states, roughly, that the set of points u such

that \(u, J)>0 is the union of two components, the inside and the outside
of J. If u belongs to the inside of J and v to the outside, we say that u and
v are on opposite sides of J. For details of the Jordan curve theorem and
its proof see [2].

A Jordan curve J is said to satisfy the twin tangent ball condition if there
exists R>0 such that for each z # J there exist points az , bz on opposite
sides of J, with

B� (az , R) & J=[z]=B� (bz , R) & J.

It is straightforward to show that if J has continuous curvature, then the
twin tangent ball condition implies that the radius of curvature of J at any
point is at least R.

Our aim in this paper is to prove the following approximation theorem.
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Theorem. Let J be a differentiable Jordan curve that satisfies the twin
tangent ball condition.2 Then there exists r>0 such that any point u of the
plane that lies within r of J has a unique closest point on J; more precisely,
if \(u, J)<r, then there exists v # J such that |u&v|<|u&z| for all
z # Jt[v].

Note that, for a given point u of the plane, it is a serious constructive
problem to establish even the existence of a point v # J such that |u&v|=
\(u, J). We cannot appeal to the classical theorem that a continuous, real-
valued function on a compact set attains its minimum, since there is a
recursive example showing that it is essentially nonconstructive; see
[6, Chap. 6].

The proof of our theorem depends on a series of lemmas, which we
develop in the next section. The proofs of several of these lemmas are quite
involved, so the reader is advised, on a first reading, to jump from here to
the proof of the theorem itself, in Section 3.

2. PRELIMINARY RESULTS

Throughout this section, J is a Jordan curve satisfying the hypotheses of
our theorem. We begin with two elementary, though nontrivial, lemmas in
plane Euclidean geometry. The reader may find it helpful to draw diagrams
to illustrate these lemmas.

We denote by z1 z2 the line joining the two distinct points z1 , z2 of the
plane. By the inclination of two intersecting lines we mean the smallest
angle between those lines.

Lemma 1. For i=0, 1, 2 let ci , c$i be points in the plane such that
|ci&c$i |=2R>0, and let zi=

1
2 (c i+c$i). There exists t>0 with the following

property: if

v min[ |zi&c0 |, |zi&c$0 |]>R for i # [1, 2],

v zi {z2 ,

v z1 z2 is parallel to c0 c$0 , and
v max[ |z1&z0 |, |z2&z0 |]<t,

then there exist distinct i, j such that

either B(ci , R) intersects both B(cj , R) and B(c$j , R)

or else B(c$i , R) intersects both B(cj , R) and B(c$j , R).
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Proof. Write zk=(xk , yk). We begin with two elementary geometric
observations.

(a) If z0=z1=0, c0c$0 is the imaginary axis, 0<%<?�2, and the
inclination of c1c$1 to the imaginary axis is %, then

max[ |c1&c0 |, |c1&c$0 |]<2R cos
%
2

and

max[ |c$1&c0 |, |c$1&c$0 |]<2R cos
%
2

.

(b) If z1=0, x2=0, | y2 |<3R�2, and the inclinations of c1 c$1 and
c2c$2 to the imaginary axis are at most

:#cos&1 ( 3
4),

then either B(c1 , R) intersects both B(c2 , R) and B(c$2 , R) or B(c$1 , R)
intersects both B(c2 , R) and B(c$2 , R).

By observation (a), if z1=z0=0 and the inclination of c1c$1 to the
imaginary axis is greater than :�2, then

max[ |c1&c0 |, |c1&c$0 |]<2R&=, (1)

max[ |c$1&c0 |, |c$1&c$0 |]<2R&=, (2)

where ==2R(1&cos(:�4)). By continuity, there exists t>0 such that if
z0=0, |z1 |<t, and |%&?�2|>:�2, then (1) and (2) hold.

Now consider points zk satisfying the bulleted conditions of the state-
ment of the lemma. For convenience, we may assume that z0=0, c0=R,
and c$0=&R, so that x1=x2 . Either the inclinations of c1c$1 and c2c$2 to
the imaginary axis are less than :, or else the inclination of one of these
two lines, say c1c$1 , is greater than :�2. In the first case, it follows from
observation (b) that either B(c1 , R) intersects both B(c2 , R) and B(c$2 , R)
or else B(c$1 , R) intersects both B(c2 , R) and B(c$2 , R). In the second case,
(1) holds and so B(c1 , R) intersects both B(c0 , R) and B(c$0 , R). K

Lemma 2. Let B1 , B2 be two closed balls of radius R that are tangent at
z. Let `, `$ be points of the plane that lie outside B1 and B2 , and on opposite
sides of the line joining the centres of B1 and B2 , such that

max[ |`&z|, |`$&z|]<R. (*)
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If 0<r<R, then z lies in the interior of any circle of radius r that passes
through both ` and `$, and hence in the interior of any ball of radius r that
contains ` and `$.

Proof. We begin with another elementary geometrical observation.

If A, B, C are vertices of a nondegenerate triangle such that the
sum % of the angles AB� C and AC� B is less than ?�2 (radians),
then the radius of the unique circle that passes through A, B, C
is |BC|�2 sin % .

To prove the lemma, we may assume that z=0 and that the centres of
B1 , B2 are (0, &R), (0, R), respectively. Let w be the unique point in which
the imaginary axis meets the segment [`, `$], let 0<r<R, and let `, `$ lie
on the circle with centre `0 and radius r. Choose $>0 such that
B(w, $)/B(`0 , r). Either |w|<$, in which case 0 # B(`0 , r), or else |w|>0.
In the latter case, take, for example, Im(w)<0. In view of (*), we see that
&R<Im(w)<0 and that the interior of the segment [`, `$] meets the
boundary of B1 in two points `1 , `$1 , where `1 is between ` and `$1 . Let
A#(0, a) and B#(0, b) be the two points in which the boundary of
B(`0 , r) meets the imaginary axis, where a>Im(w)>b. Let % be the sum
of the angles A �̀ `$ and A �̀ $`; and , the sum of the angles 0 �̀ 1`$1 and 0`$1@`1 .
Noting that |`1&`$1 |<|`&`$|, choose =>0 such that if Im(w)<a<=, then

sin %
sin ,

<
|`&`$|

|`1&`$1 |
.

Since, by the observation at the beginning of the proof,

|`&`$|
2 sin %

=r<R=
|`1&`$1 |
2 sin ,

,

we must have a�=. Thus 0 is in the interior of the segment [a, b] and is
therefore in B(`0 , r). K

Before applying Lemma 1, we note that, although the full inter-
mediate value theorem does not hold constructively (see [3, p. 8]), there
are several useful constructive versions of that classical theorem, including
the following one:

(IVT) Let f : [0, 1] � R be a continuous function with f (0)< f (1).
There exists a sequence ( yn) in [ f (0), f (1)] such that if f (0)� y� f (1)
and y{ yn for each n, then there exists x # [0, 1] with f (x)= y [3, p. 63,
Exercise 14].
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Lemma 3. Let x, y, z be points of J such that z lies between x and y on
J, and suppose that [x, y] is bounded away from the line joining az and bz .
Then |J(x, y)|�diam(J(x, y))>R�2.

Proof. It is clear that |J(x, y)|�diam(J(x, y)). We may assume that
z=0, az=&R, and bz=R. Since

0<s#inf[ |!&`| : ! # [x, y], Re(`)=0],

we may further assume that [x, y] lies in the region Re(`)>0. Either
max[ |x|, | y|]>R�2 and therefore diam(J(x, y))>R�2, or else max[ |x|,
| y|]<R. In the latter case, suppose that J(x, y) does not intersect the
region

D#[` : Im(`)>R] _ [` : Im(`)<&R].

With t as in Lemma 1, we now use (IVT) to find * # (0, t) such that there
exists z1=(x1 , y1) between x and z on J with |z1 |<t and y1=*, and there
exists z2=(x2 , y2) between z and y on J such that |z2 |<t and y2=*.
Taking z0=0 in Lemma 1, we see that one of the balls B(azi

, R), B(bzi
, R)

intersects both the balls B(azj
, R), B(bzj

, R) and therefore intersects both
the inside and the outside of J. Since this is absurd, we conclude that
J(x, y) intersects the region

[` : Im(`)>R�2] _ [` : Im(`)<&R�2]

and hence that diam(J(x, y))>R�2. K

Lemma 4. For each : # [0, ?) there exists ; with 0<;<R such that if
0<r�;, w # R2, :�%1�%2�2?&:, and | f (ei%k)&w|�r (k=1, 2), then
| f (ei%)&w|<r for all % in the open interval (%1 , %2).

Proof. We first observe that f (ei%) [ % is a uniformly continuous map-
ping of f ([:, 2?&:]) onto [:, 2?&:]. As J is differentiable, it follows that
there exists ; such that if :�%�%$<2?&: and | f (ei%)& f (ei%$)|<2;, then
|J(ei%, e i%$)|<R�2. Let w, r, %1 , %2 be as in the hypotheses, and write
zk # f (ei%k). Let %1<%<%2 and z= f (ei%); then z{z1 , z2 . Define

s#inf[ |!&`| : ! # [z1 , z2], ` # M],

where M is the line joining az and bz . Then

|z1&z2 |�|z1&w|+|z2&w|�2r�2;,
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so |J(z1 , z2)|<R�2, by our choice of ;, and it follows from Lemma 3 that
s=0. Moreover,

|z1&z|�|J(z1 , z)|�|J(z1 , z2)|<R�2,

so as z1 is distinct from z and lies outside the balls B(az , R) and B(bz , R),
it is a positive distance from M. Similarly, |z2&z|<R�2 and z2 is a positive
distance from M. Since s=0, z1 and z2 lie on opposite sides of M; it follows
from Lemma 2 that |z&w|<r. K

Let | be the modulus of continuity for the mapping % [ f (ei%) on R; so
for each =>0, if | f (ei%)& f (ei%$)|>=, then |%&%$|�|(=). In the remainder
of this paper, r0 will be the positive number ; corresponding to :=|(R�8)
in Lemma 4.

Lemma 5. If \(u, J)<min[r0 , R�8] and |u& f (1)|>R�4, then for all
but countably many r with

\(u, J)<r<min[r0 , R�8], (1)

there exist %1 , %2 such that 0<%1<%2<2? and

[% # [0, 2?) : | f (ei%)&u|�r]=[%1 , %2].

Proof. If % # [0, 2?) and

| f (ei%)&u|�
R
8

, (2)

then

| f (ei%)& f (1)|�|u& f (1)|&| f (ei%)&u|>
R
8

and therefore :�%�2?&:, where :=|(R�8). Since f is uniformly con-
tinuous on [:, 2?&:], for all but countably many r with

\(u, J)<r<min[r0 , R�8],

the set

Sr#[% # [0, 2?) : | f (ei%)&u|�r]

=[% # [:, 2?&:] : | f (ei%)&u|�r]
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is compact. For such r, let %1 #inf Sr and %2 #sup Sr . In view of (1) and
(IVT), we can find %, %$ # [0, 2?) such that

| f (ei%)&u|<| f (ei%$)&u|<r;

so %1<%2 . Using Lemma 4, we now see that Sr=[%1 , %2]. K

If a, b are two distinct points of the plane, then the ray from a towards
b is the set

ab�#[(1&t) a+tb : t�0].

The proofs of the following two lemmas are simple exercises in geometry
and trigonometry, and are omitted.

Lemma 6. Let z1 , z2 be distinct points on the circle with centre w and
radius r0>0, let z be the midpoint of the minor arc joining z1 and z2 , and
let t>0. Then there exists =>0 such that if v # zw� and |v&z|>r0+t, then
|v&z1 |>r0+=.

Lemma 7. If C, C$ are two circles of radius r that intersect in distinct
points z1 , z2 with |z1&z2 |< 4

5r, and if the line joining the centres of the
circles cuts C at z and C$ at z$, then |z&z$|< 1

2 |z1&z2 |.

Lemma 8. Let z1 , z2 be distinct points of J such that

## max
k=1, 2

|u&zk |< 2
5r0 .

Then #>\(u, J).

Proof. Let zk= f (ei%k), where %k # [0, 2?), and assume without loss of
generality that %1<%2 . Choose points w, w$ on opposite sides of the line
joining z1 and z2 , such that

|w&zk |=|w$&zk |=r0 (k=1, 2).

Denote by C, C$ the circles bounding B(w, r0) and B(w$, r0), respectively.
It follows from our choice of r0 and Lemma 4 that for all % # (%1 , %2),

max[ | f (ei%)&w|, | f (ei%)&w$|]<r0 . (1)

Let z be the point in which [w, w$] intersects C. Since z is bounded away
from z1 and z2 , and, by (1), it is distinct from each point of f ((%1 , %2)), it
follows by continuity that z is distinct from each point of f ([%1 , %2]). Now,
this set is compact, since the mapping % [ f (%) is uniformly continuous on
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R and the mapping f (%) [ % is uniformly continuous on f ([%1 , %2]). It
follows from [3, Chap. 4, Lemma (3.8)] that z is bounded away from
f ([%1 , %2]). Similarly, the point z$ in which [w, w$] intersects C$ is boun-
ded away from f ([%1 , %2]). Hence

0<t# 1
6 min[#, \(z, f ([%1 , %2])), \(z$, f ([%1 , %2]))].

Let L be the line joining w and w$. By (IVT), there exist % # (%1 , %2) and
` # L such that | f (ei%)&`|<t. Then

|`&z|�|z& f (ei%)|&| f (ei%)&`|>5t, (2)

so either ` # aw� or ` # bw$�, where

a=z+5t(w&z),

b=z+5t(w$&z).

But if ` # bw$�, then B(`, t) is disjoint from B(w, r0) & B(w$, r0), which is
absurd since f (%) # B(w, r0) & B(w$, r0). Hence ` # aw�/zw�. A similar argu-
ment shows that |`&z$|>5t and ` # z$w$�.

Now,

|z1&z2 |�|u&z1 |+|u&z2 |< 4
5r0 ,

so, by Lemma 7,

0<s# 1
2 ( 1

2 |z1&z2 |&|z&z$| ).

Hence there exists = as in Lemma 6 such that

0<=<min[t, s].

Either \(u, L)>0, in which case |u&z1 |{|u&z2 | and the desired conclu-
sion readily follows, or else \(u, L)<=. In the latter case we show that
|u&`|<|u&z1 |. To this end, choose v # L such that |u&v|<=. Then either
v # zw� or else v # z$w$�. Suppose the first alternative obtains. Note that, in
view of (2) and the fact that w, w$ are on opposite sides of z1z2 , z is on the
minor arc of C joining z1 and z2 . Thus if |v&z|>r0+t, then

|u&z1 |�|v&z1 |&|u&v|

>r0+=&=

=r0 ,
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a contradiction. Hence |v&z|�r0+t. Now, either |v&z|>r0&2t or
|v&z|<r0&t. In the first case we have |v&w|<2t,

|u&z1 |�|v&z1 |&|u&v|

�|w&z1 |&|v&w|&=

>r0&2t&t

=r0&3t.

Hence

|u&`|�|v&`|+|u&v|

<|v&z|&|z&`|+=

<r0+t&5t+t (by (2))

=r0&3t

<|u&z1 |.

In the case |v&z|<r0&t, either |v&`|<#&2t and therefore

|u&`|<#&2t+=<#,

or else, as we may assume, v{`. We now have two subcases to consider.

Subcase 1. v lies strictly between ` and w on the ray zw�. Then

|v&z1 |�|w&z1 |&|w&v|

=r0&(|w&z|&|z&`|&|`&v| )

=|z&`|+|`&v|

>5t+|`&v|,

and therefore

|u&`|<|v&`|+=

<|v&z1 |&5t+t

<|u&z1 |+=&4t

<|u&z1 |&3t.

Subcase 2. v lies strictly between z and ` on the ray zw�. Then v, ` lie
on the interior of the segment [z, z$] and, by elementary geometry,
|v&z1 |� 1

2 |z1&z2 |; whence
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|u&`|<|v&`|+=

�|z&z$|+s

= 1
2 |z1&z2 |&s

�|v&z1 |&s

<|u&z1 |+=&s

<|u&z1 |.

This completes the proof when v # zw�. The proof when v # z$w$� is
similar. K

It is now simple to give a classical proof of our main theorem. To this
end, suppose that the hypotheses of the theorem hold, and let \(u, J)< 2

5r0 .
Choose v # J such that |u&v|=\(u, J). (This is the first nonconstructive
step in the proof.) If there exists z # J such that z{v and |u&z|=\(u, J),
then Lemma 8 shows that

\(u, J)<max[ |u&v|, |u&z|],

which is absurd. It follows that |u&v|<|u&z| for all z # Jt[v]. (This
is also a nonconstructive step: ruling out the possibility that u has two
distinct closest points on J does not suffice to establish, constructively, the
strong uniqueness conclusion of the theorem.)

3. PROOF OF THE MAIN THEOREM

We are now able to prove our main theorem constructively. To this end,
assume that the hypotheses of the theorem are satisfied. Consider u # R2

such that

\(u, J)<r#min{2
5

r0 ,
R
8= .

Since, by Lemma 3, diam(J)>R�2, there exists , # [0, 2?) such that
|u& f (ei,)|>R�4; replacing f by the mapping % [ f (ei(,&%)), we may
assume that |u& f (1)|>R�4. Using Lemma 5, choose %1 , %$1 , and r1 such
that

0<%1<%$1<2?,

\(u, J)<r1<min {2
5

r0 ,
R
8

, \(u, J)+1= ,
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and

S1 #[% # [0, 2?) : | f (ei%)&u|�r1]=[%1 , %$1].

Suppose that, for some n�1, we have constructed %n , %$n , and rn such that

(1) 0<%n<%$n<2?,

(2) \(u, J)<rn<min[ 2
5r0 , rn&1 , \(u, J)+(1�n)],

(3) Sn#[% # [0, 2?) : | f (ei%)&u|�rn]=[%n , %$n], and

(4) %$n&%n�( 2
3)n&1 (%$1&%1).

Let

z1= f (ei((1�3) %n+(2�3) %$n)),

z2= f (ei((2�3) %n+(1�3) %$n)).

Writing

##max[ |u&z1 |, |u&z2 |],

we see from properties (2) and (3) that #�rn< 2
5 r0 ; whence, by Lemma 8,

\(u, J)<#. Using Lemma 5 again, we can now find rn+1 , %n+1 , and %$n+1

such that 0<%n+1<%$n+1<2?,

\(u, J)<rn+1<min {rn , #, \(u, J)+
1

n+1=
and

Sn+1#[% # [0, 2?) : | f (ei%)&u|�rn+1]=[%n+1 , %$n+1].

This completes the inductive construction of sequences (%n), (%$n), and (rn)
satisfying properties (1)�(4).

Now, (Sn) is a descending sequence of compact intervals, and, by
property (4), the length of Sn converges to 0. Hence ��

n=1 Sn consists
of a single point %� . It follows from properties (2) and (3) that |u&v|=
\(u, J), where v= f (ei%�). If z # Jt[v], then either |u&z|>\(u, J) or else
|u&z|< 2

5r0 ; in the latter case we see from Lemma 8 that

max[ |u&v|, |u&z|]>\(u, J)

and therefore that |u&z|>\(u, J). K
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